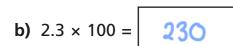
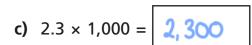

Multiply by 10, 100 and 1,000


1 Complete the calculations and sentences.

Use place value counters to help you.



a)
$$2.3 \times 10 =$$
 23

When the number is multiplied by 10 the counters move place to the left.

When the number is multiplied by 100 the counters move 2 places to the left.

When the number is multiplied by 1,000 the counters move 3 places to the left.

2 Complete the diagram.

a) Draw counters on the place value charts to represent each calculation.

$$4.4 \times 1$$

Th	Н	Т	0	Tth	Hth
			00	00	

4.4×10

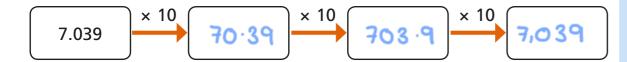
Th	Н	Т	0	Tth	Hth
			00	000	

4.4×100

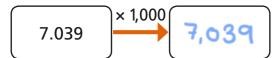
Th	Н	Т	0	Tth	Hth
			00	0 0	

$4.4 \times 1,000$

Th	Н	Т	0	Tth	Hth
4			000	000	


b) Complete the calculations.

What do you notice?



Complete the calculations.

5 Complete the diagrams.

What do you notice? Why does this happen?

They all gure the same final answer because 10 ×10 ×10 = 100 ×10 = 1,000

6 Write >, < or = to compare the number sentences.

1.4 × 10 × 10
$$=$$
 1.4 × 1,000
1.4 × 10 × 100 $=$ 1.4 × 1,000
1.4 × 10 × 10 $=$ 1.4 × 1,000
1.4 × 10 × 2 $=$ 1.4 × 100

7 Kim is calculating 14.3 × 200 She writes this as her answer.

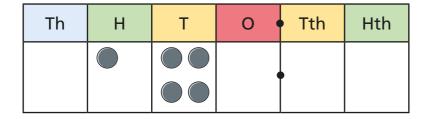
$$14.3 \times 200 = 28.600$$

Explain Kim's mistake.

8 Use the cards to complete the calculation.
You can use each card more than once.

$$\times 1$$
 $\times 10$ $\times 100$ $\times 1,000$ $\times 1,000$

How many ways is it possible to complete this calculation? Talk about it with a partner.



Divide by 10, 100 and 1,000

Complete the calculations and sentences.

Use place value counters to help you.

a) $140 \div 10 =$

When the number is divided by 10 the counters move place to the right.

b) 140 ÷ 100 = 1.4

> When the number is divided by 100 the counters move places to the right.

c) 140 ÷ 1,000 =

When the number is divided by 1,000 the counters move places to the right.

Complete the diagram.

- a) Draw counters to represent the calculations.

Н	Т	0	Tth	Hth	Thth
0	00	000			

123 ÷ 10

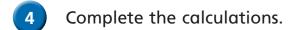
123 ÷ 1

Н	Т	0	Tth	Hth	Thth
0	00	000	\rightarrow		

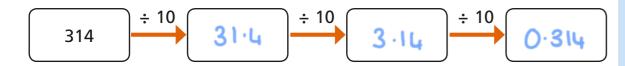
123 ÷ 100

Н	Т	0	Tth	Hth	Thth
0	00	00			

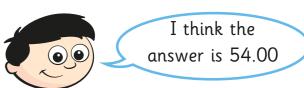
123 ÷ 1,000


Н	Т	0	Tth	Hth	Thth
0	00	00			7

b) Complete the calculations.


What do you notice?

5 Complete the diagrams.


What do you notice? Why does this happen?

6 Write >, < or = to compare the number sentences.

$$5,400 \div 10 \div 10$$
 = $5,400 \div 1,000$
 $60 \div 100 \div 10$ = $600 \div 100$
 $5.7 \div 10$ = $57 \div 100$
 $5,601 \div 1,000$ > $5.601 \div 10$

Dexter is solving the calculation 5,400 ÷ 100

Is Dexter correct? <u>Yes</u>

Explain your reasoning.

54.00 is the same as 54

8 Rosie is solving the calculation 3,600 ÷ 200

Is Rosie correct? No

Explain your reasoning.

have divided by 100 then 2 to give an answer of 18

